Metodi alternativi per studi sulla tossicità per lo sviluppo: cellule staminali embrionali, tossicogenomica e CAESAR

[van Dartel DA, Piersma AH. The embryonic stem cell test combined with toxicogenomics as an alternative testing model for the assessment of developmental toxicity. Reprod Toxicol. 2011 Sep;32(2):235-44. doi: 10.1016/j.reprotox.2011.04.008. Epub 2011 May 6.]


One of the most studied in vitro alternative testing methods for identification of developmental toxicity is the embryonic stem cell test (EST). Although the EST has been formally validated, the applicability domain as well as the predictability of the model needs further study to allow successful implementation of the EST as an alternative testing method in regulatory toxicity testing. Genomics technologies have already provided a proof of principle of their value in identification of toxicants such as carcinogenic compounds. Also within the EST, gene expression profiling has shown its value in the identification of developmental toxicity and in the evaluation of factors critical for risk assessment, such as dose and time responses. It is expected that the implementation of genomics into the EST will provide a more detailed end point evaluation as compared to the classical morphological scoring of differentiation cultures. Therefore, genomics may contribute to improvement of the EST, both in terms of definition of its applicability domain as well as its predictive capacity. In the present review, we present the progress that has been made with regard to the prediction of developmental toxicity using the EST combined with transcriptomics. Furthermore, we discuss the developments of additional aspects required for further optimization of the EST, including kinetics, the use of human embryonic stem cells (ESC) and computational toxicology. Finally, the current and future use of the EST model for prediction of developmental toxicity in testing strategies and in regulatory toxicity evaluations is discussed.

[Cassano A, Manganaro A, Martin T, Young D, Piclin N, Pintore M, Bigoni D, Benfenati E. CAESAR models for developmental toxicity. Chem Cent J. 2010 Jul 29;4 Suppl 1:S4. doi: 10.1186/1752-153X-4-S1-S4.]

Full Text:



The new REACH legislation requires assessment of a large number of chemicals in the European market for several endpoints. Developmental toxicity is one of the most difficult endpoints to assess, on account of the complexity, length and costs of experiments. Following the encouragement of QSAR (in silico) methods provided in the REACH itself, the CAESAR project has developed several models.


Two QSAR models for developmental toxicity have been developed, using different statistical/mathematical methods. Both models performed well. The first makes a classification based on a random forest algorithm, while the second is based on an adaptive fuzzy partition algorithm. The first model has been implemented and inserted into the CAESAR on-line application, which is java-based software that allows everyone to freely use the models.


The CAESAR QSAR models have been developed with the aim to minimize false negatives in order to make them more usable for REACH. The CAESAR on-line application ensures that both industry and regulators can easily access and use the developmental toxicity model (as well as the models for the other four endpoints).


Inserisci i tuoi dati qui sotto o clicca su un'icona per effettuare l'accesso:


Stai commentando usando il tuo account Chiudi sessione / Modifica )

Foto Twitter

Stai commentando usando il tuo account Twitter. Chiudi sessione / Modifica )

Foto di Facebook

Stai commentando usando il tuo account Facebook. Chiudi sessione / Modifica )

Google+ photo

Stai commentando usando il tuo account Google+. Chiudi sessione / Modifica )

Connessione a %s...