Archivi del mese: novembre 2015

Differenze tra geni ortologhi nell’uomo e nel topo

[Walid H. Gharib and Marc Robinson-Rechavi. When orthologs diverge between human and mouse. Brief Bioinform. 2011 Sep; 12(5): 436–441.]

Abstract:

Despite the common assumption that orthologs usually share the same function, there have been various reports of divergence between orthologs, even among species as close as mammals. The comparison of mouse and human is of special interest, because mouse is often used as a model organism to understand human biology. We review the literature on evidence for divergence between human and mouse orthologous genes, and discuss it in the context of biomedical research.

Nel testo:

We believe that both small-scale and large-scale studies provide evidence that functional divergence between human and mouse orthologs, although a minority phenomenon, still affects a significant proportion of genes. Divergence of gene expression, of alternative splicing, and of mutant phenotypes, each affect of the order of 10–20% of ortholog pairs, under conservative estimates. If these and other different processes affect different genes, then it might be a majority of genes which are affected. But even if the same genes differ in expression pattern, splicing, etc., then having ~15% of human-mouse orthologs with strong differences will affect many pathways and biological processes of interest.

Cellule staminali paziente-specifiche per studiare epilessia, sindrome di Rett, di Timothy, di Phelan-McDermid e di Dravet

[Tidball AM, Parent JM. Exciting Cells: Modeling Genetic Epilepsies with Patient-Derived Induced Pluripotent Stem Cells. Stem Cells. 2015 Sep 7. doi: 10.1002/stem.2203.] 

Abstract:

Human induced pluripotent stem cell (iPSC) models of epilepsy are becoming a revolutionary platform for mechanistic studies and drug discovery. The skyrocketing pace of epilepsy gene discovery is vastly outstripping the development of in vivo animal models. Currently, antiepileptic drug prescribing to patients with specific genetic epilepsies is based on small-scale clinical trials and empiricism; however, rapid production of patient-derived iPSC models will allow for precision therapy. We review iPSC-based studies that have already afforded novel discoveries in diseases with epileptic phenotypes, as well as challenges to using iPSC-based neurological disease models. We also discuss iPSC-derived cardiomyocyte studies of arrhythmia-inducing ion channelopathies that exemplify novel drug discovery and use of multielectrode array technology that can be translated to epilepsy research. Beyond initial studies of Rett, Timothy, Phelan-McDermid, and Dravet syndromes, the stage is set for groundbreaking iPSC-based mechanistic and therapeutic discoveries in genetic epilepsies with the potential to impact patient treatment and quality of life.

I test di tossicità in vitro e le analisi genomiche sono più accurate degli studi su animali in questo campo: il caso del tabacco

[Manuppello JR, Sullivan KM. Toxicity assessment of tobacco products in vitro. Altern Lab Anim. 2015 Mar;43(1):39-67.]

Abstract:

Driven by new regulatory demands to demonstrate risk reduction, the toxicity assessment of tobacco products increasingly employs innovative in vitro methods, including biphasic cell and tissue cultures exposed to whole cigarette smoke at the air-liquid interface, cell transformation assays, and genomic analyses. At the same time, novel tobacco products are increasingly compared to traditional cigarettes. This overview of in vitro toxicology studies of tobacco products reported in the last five years provides evidence to support the prioritisation of in vitro over in vivo methods by industry and their recommendation by regulatory authorities.

Nel testo:

“Combining data from human cells and tissues with existing data from human epidemiology and clinical studies, may provide insights into potential harm reduction strategies, while avoiding the extrapolation issues often associated with in vivo animal studies.
In general, studies that use in vitro methods have the ability to assess potential MRTPs more quickly and to provide more-specific, actionable and human relevant data than do animal studies. In vitro models can also better reflect genetic and environmental differences within the human population (54), which can be important for tobacco addiction (55) and toxicity (56) studies“.

 

Colture neuronali da cellule staminali in ambito farmacologico e tossicologico

[Smith I, Silveirinha V, Stein JL, de la Torre-Ubieta L, Farrimond JA, Williamson EM, Whalley BJ. Human neural stem cell-derived cultures in three-dimensional substrates form spontaneously functional neuronal networks. J Tissue Eng Regen Med. 2015 Feb 25.]

Abstract:

Differentiated human neural stem cells were cultured in an inert three-dimensional (3D) scaffold and, unlike two-dimensional (2D) but otherwise comparable monolayer cultures, formed spontaneously active, functional neuronal networks that responded reproducibly and predictably to conventional pharmacological treatments to reveal functional, glutamatergic synapses. Immunocytochemical and electron microscopy analysis revealed a neuronal and glial population, where markers of neuronal maturity were observed in the former. Oligonucleotide microarray analysis revealed substantial differences in gene expression conferred by culturing in a 3D vs a 2D environment. Notable and numerous differences were seen in genes coding for neuronal function, the extracellular matrix and cytoskeleton. In addition to producing functional networks, differentiated human neural stem cells grown in inert scaffolds offer several significant advantages over conventional 2D monolayers. These advantages include cost savings and improved physiological relevance, which make them better suited for use in the pharmacological and toxicological assays required for development of stem cell-based treatments and the reduction of animal use in medical research.

 

I difetti e i danni all’Uomo della sperimentazione animale

[Akhtar A. The flaws and human harms of animal experimentation. Camb Q Healthc Ethics. 2015 Oct;24(4):407-19.]

Full Text: http://journals.cambridge.org/action/displayFulltext?type=6&fid=9949938&jid=CQH&volumeId=24&issueId=04&aid=9949937&bodyId=&membershipNumber=&societyETOCSession=&fulltextType=RA&fileId=S0963180115000079

Abstract:

Nonhuman animal (“animal”) experimentation is typically defended by arguments that it is reliable, that animals provide sufficiently good models of human biology and diseases to yield relevant information, and that, consequently, its use provides major human health benefits. I demonstrate that a growing body of scientific literature critically assessing the validity of animal experimentation generally (and animal modeling specifically) raises important concerns about its reliability and predictive value for human outcomes and for understanding human physiology. The unreliability of animal experimentation across a wide range of areas undermines scientific arguments in favor of the practice. Additionally, I show how animal experimentation often significantly harms humans through misleading safety studies, potential abandonment of effective therapeutics, and direction of resources away from more effective testing methods. The resulting evidence suggests that the collective harms and costs to humans from animal experimentation outweigh potential benefits and that resources would be better invested in developing human-based testing methods.

Nel testo:

Wide differences have also become apparent in the regulation of the same genes, a point that is readily seen when observing differences between human and mouse livers. 48 Consistent phenotypes (observable physical or biochemical characteristics) are rarely obtained by modification of the same gene, even among different strains of mice. 49 Gene regulation can substantially differ among species and may be as important as the presence or absence of a specific gene. Despite the high degree of genome conservation, there are critical differences in the order and function of genes among species. To use an analogy: as pianos have the same keys, humans and other animals share (largely) the same genes. Where we mostly differ is in the way the genes or keys are expressed. For example, if we play the keys in a certain order, we hear Chopin; in a different order, we hear Ray Charles; and in yet a different order, it’s Jerry Lee Lewis. In other words, the same keys or genes are expressed, but their different orders result in markedly different outcomes.

Recognizing the inherent genetic differences among species as a barrier to translation, researches have expressed considerable enthusiasm for genetically modified (GM) animals, including transgenic mice models, wherein human genes are inserted into the mouse genome. However, if a human gene is expressed in mice, it will likely function differently from the way it functions in humans, being affected by physiological mechanisms that are unique in mice. For example, a crucial protein that controls blood sugar in humans is missing in mice. 50 When the human gene that makes this protein was expressed in genetically altered mice, it had the opposite effect from that in humans: it caused loss of blood sugar control in mice. Use of GM mice has failed to successfully model human diseases and to translate into clinical benefit across many disease categories. 51 Perhaps the primary reason why GM animals are unlikely to be much more successful than other animal models in translational medicine is the fact that the “humanized” or altered genes are still in nonhuman animals.

In many instances, nonhuman primates (NHPs) are used instead of mice or other animals, with the expectation that NHPs will better mimic human results. However, there have been sufficient failures in translation to undermine this optimism. For example, NHP models have failed to reproduce key features of Parkinson’s disease, both in function and in pathology. 52 Several therapies that appeared promising in both NHPs and rat models of Parkinson’s disease showed disappointing results in humans.53 The campaign to prescribe hormone replacement therapy (HRT) in millions of women to prevent cardiovascular disease was based in large part on experiments on NHPs. HRT is now known to increase the risk of these diseases in women. 54

e:

“Appreciation of differences” and “caution” about extrapolating results from animals to humans are now almost universally recommended. But, in practice, how does one take into account differences in drug metabolism, genetics, expression of diseases, anatomy, influences of laboratory environments, and species- and strain-specific physiologic mechanisms—and, in view of these differences, discern what is applicable to humans and what is not? If we cannot determine which physiological mechanisms in which species and strains of species are applicable to humans (even setting aside the complicating factors of different caging systems and types of flooring), the usefulness of the experiments must be questioned.

It has been argued that some information obtained from animal experiments is better than no information. 64 This thesis neglects how misleading information can be worse than no information from animal tests. The use of nonpredictive animal experiments can cause human suffering in at least two ways: (1) by producing misleading safety and efficacy data and (2) by causing potential abandonment of useful medical treatments and misdirecting resources away from more effective testing methods.

Humans are harmed because of misleading animal testing results. Imprecise results from animal experiments may result in clinical trials of biologically faulty or even harmful substances, thereby exposing patients to unnecessary risk and wasting scarce research resources. 65 Animal toxicity studies are poor predictors of toxic effects of drugs in humans. 66 As seen in some of the preceding examples (in particular, stroke, HRT, and TGN1412), humans have been significantly harmed because investigators were misled by the safety and efficacy profile of a new drug based on animal experiments. 67 Clinical trial volunteers are thus provided with raised hopes and a false sense of security because of a misguided confidence in efficacy and safety testing using animals.

An equal if indirect source of human suffering is the opportunity cost of abandoning promising drugs because of misleading animal tests. 68 As candidate drugs generally proceed down the development pipeline and to human testing based largely on successful results in animals 69 (i.e., positive efficacy and negative adverse effects), drugs are sometimes not further developed due to unsuccessful results in animals (i.e., negative efficacy and/or positive adverse effects). Because much pharmaceutical company preclinical data are proprietary and thus publicly unavailable, it is difficult to know the number of missed opportunities due to misleading animal experiments. However, of every 5,000–10,000 potential drugs investigated, only about 5 proceed to Phase 1 clinical trials. 70 Potential therapeutics may be abandoned because of results in animal tests that do not apply to humans. 71 Treatments that fail to work or show some adverse effect in animals because of species-specific influences may be abandoned in preclinical testing even if they may have proved effective and safe in humans if allowed to continue through the drug development pipeline.